Model Random Forest Regression Untuk Peramalan Penyebaran Covid-19 Di Indonesia

نویسندگان

چکیده

Penyebaran COVID-19 sangat cepat yang membuat pada tanggal 27 Februrari 2020, sudah menginfeksi 78630 orang di China dan 2747 lainnya meninggal dunia. Keberadaan Indonesia sendiri pertama kali terkonfirmasi 2 Maret 2020. Pada penelitian ini, peneliti akan melakukan peramalan penyebaran menggunakan metode Random Forest Regression. Raw Dataset digunakan adalah dataset dapat dari situs www.kaggle.com berisikan record sebanyak 10695 dirangkum 1 2020 hingga 21 Januari 2021. Jumlah fitur dimiliki raw 37 fitur. Proses preprocessing ini terdiri konversi fitur, seleksi mendapatkan untuk model. Metode Recursive Feature Elimination berhasil menyeleksi tadinya berjumlah menjadi 20 Pelatihan model training set 8555 record. Peramalan Regression validation 2139 Hasil perhitungan error tidak besar, yaitu sebesar 6.477 New Cases, 0.2469 Deaths artinya hasil nilai diramalkan dengan aktual berbeda jauh.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Beta Regression Model with Random Effect

 Abstract: In many applications we have to encountered with bounded dependent variables. Beta regression model can be used to deal with these kinds of response variables. In this paper we aim to study spatially correlated responses in the unit interval. Initially we introduce spatial beta generalized linear mixed model in which the spatial correlation is captured through a random effect. T...

متن کامل

Evaluation of risk factors of recurrence of hodgkin\'s lymphoma using random survival forest and comparison with cox regression model

Background: In many studies, Cox regression was used to assess the important factors that affect the survival of cancer patients based on demographic and clinical variables. The aim of this study was to determine the factors affecting the survival of patients with Hodgkin's lymphoma using the random survival forest (RSF) method and compare it with the Cox model. Methods: In this retrospective ...

متن کامل

Identification of Factors Affecting Metastatic Gastric Cancer Patients’ Survival Using the Random Survival Forest and Comparison with Cox Regression Model

Background and Objectives: In survival analysis, using the Cox model to determine the effective factors requires the assumptions whose failure of leads to biased results. The aim of this paper was to determine the factors affecting the survival of metastatic gastric cancer patients using the non-parametric method of Randomized Survival Forest (RSF) model and to compare its result with the Cox m...

متن کامل

Variable Importance Assessment in Regression: Linear Regression versus Random Forest

Relative importance of regressor variables is an old topic that still awaits a satisfactory solution. When interest is in attributing importance in linear regression, averaging over orderings methods for decomposing R2 are among the state-of-theart methods, although the mechanism behind their behavior is not (yet) completely understood. Random forests—a machinelearning tool for classification a...

متن کامل

Unconstrained Gaze Estimation Using Random Forest Regression Voting

In this paper we address the problem of automatic gaze estimation using a depth sensor under unconstrained head pose motion and large user-sensor distances. To achieve robustness, we formulate this problem as a regression problem. To solve the task in hand, we propose to use a regression forest according to their high ability of generalization by handling large training set. We train our trees ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Decode

سال: 2022

ISSN: ['2775-1813', '2775-2984']

DOI: https://doi.org/10.51454/decode.v2i2.48